
Invited: Challenges and Opportunities of Quantum Optimization
in Finance

Zichang He, Shouvanik Chakrabarti, Dylan Herman, Niraj Kumar, Changhao Li, Pierre Minssen,
Pradeep Niroula, Ruslan Shaydulin, Yue Sun, Shree Hari Sureshbabu, Romina Yalovetzky,

and Marco Pistoia
Global Technology Applied Research, JPMorgan Chase, New York, NY 10017 USA

ABSTRACT
In recent years, immense progress have been made in quantum
optimization techniques. In this position paper, we share our opin-
ion on some of the challenges facing the quantum optimization
community and highlight opportunities which we believe would
benefit from increased attention of researchers.

1 INTRODUCTION
Quantum computers have the potential to deliver broadly applica-
ble speedups in optimization. The ubiquity of hard optimization
problems in science and industry underscores the pressing neces-
sity for developing novel approaches to optimization. Financial
industry is among the domains in need of better optimization tools,
as hard optimization problem underlie many aspects of market
functioning and investment decision-making that sustain our econ-
omy [6]. Recent years saw rapid progress in quantum algorithms for
optimization, with many new techniques introduced and previous
techniques improved.

At the same time, quantum algorithms for optimization have
not yet outperformed their state-of-the-art classical counterparts in
practice. A number of challenges must be addressed before reaching
this milestone. In this paper, we present our perspective on the most
pressing challenges, and outline some promising opportunities
for future advancement. This paper does not aim to provide an
exhaustive survey of quantum optimization, and many exciting
recent developments fall outside of our scope. The topics we discuss
are multifaceted and subject to active research. In the interest of
space, we omit references to works that did not originate in our
group and occasionally distill years of complex research into a short
sentence. Our goal throughout this paper is clarity; consequently,
we occasionally exclude caveats and overlook subtleties. Finally,
we remark that all the statements we make focus on optimization
domain only. The same classes of algorithms may provide speedups
in other domains, e.g. in quantum simulation.

Throughout this paper we use the notion of “quantum compu-
tational speedup” or simply “speedup”. By this we mean that on
a fixed problem and for a fixed desired solution quality, a quan-
tum algorithm finds a solution faster than a classical one. We note
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that obtaining the same solution faster can always be converted to
obtaining a higher solution quality within the same time budget.

2 CHALLENGES
The challenges we discuss in this section imply that a large propor-
tion of commonly considered quantum techniques for optimization
may not become practical in the near future. While these challenges
may seem daunting, we believe that acknowledging and tackling
them head-on is required for progress.

2.1 Provable speedups are small
The primary challenge in quantum optimization is that the rigorous
end-to-end quantum speedups that have been achieved in the past
are typically low-degree, often quadratic or worse. These speedups
are commonly obtained by applying amplitude amplification to
specific components of classical algorithms. The dearth of large
provable speedups in optimization motivates the development of
a veritable kaleidoscope of heuristics, whose the challenges we
discuss below. While super-polynomial proven speedups in opti-
mizations do exist, they are exclusively derived within contrived
settings that are unlikely to correspond to realistic industrially-
relevant problems. For example, a common technique is to convert
the hidden subgroup problem into an optimization problem and
use Shor’s algorithm to solve it, arriving at a super-polynomial sep-
aration between quantum and best classical methods. Despite their
mathematical sophistication, such analyses fail to offer insights into
whether quantum algorithms can offer super-polynomial speedups
for any instances of industrially-relevant problems.

The existing provable low-degree speedups face several chal-
lenges. In many cases the speedup is demonstrated over the worst-
case instance of a problem and may not be realizable on average-
case instances that are actually encountered in industrial settings.
Even when the speedup is universal [2], the high overhead of error
correction implies that these speedups are unlikely to be realized ex-
cept for exceedingly large problems that require months of classical
computation time. Given that most industrial processes necessitate
problem solution within hours at most, these speedups are unlikely
to yield significant economic impact.

2.2 Variational algorithms are unlikely to yield
speedups

By far, the most popular class of heuristics for optimization consists
of variational quantum algorithms or VQAs. VQAs are a family of
algorithms that, per problem instance, optimize the parameters in
a parameterized quantum circuit to prepare states that minimize
specific target objective. However, there are several major barriers
to developing useful VQAs.
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The first is that, the cost of obtaining the gradient of a parameter-
ized quantum circuit, in terms of circuit executions, scales linearly
with the number of parameters. This is in stark contrast to the back-
propagation algorithm used by classical neural networks, where the
cost, in terms of evaluations of the neural network, of obtaining the
gradient remain independent of the number of parameters. While
the number of parameters can be reduced in some cases without
hurting convergence [15], it remains uncertain if this is feasible in
general and whether the magnitude of the reduction is sufficient to
meaningfully alleviate the cost of training.

The second is the well-known barren plateau (BP), character-
ized by an effectively flat landscape that occurs due to gradients
exponentially (with the number of qubits) concentrating to zero
over random, usually uniform, parameter initializations. This phe-
nomenon occurs in noiseless circuits, but is stronger in noisy cases.
Since both the cost function and its gradients must be estimated by
measuring the quantum state, this implies that both zero- and first-
order optimization methods will require exponentially many sam-
ples from the quantum circuit to determine how to make progress
in the cost landscape. Recent techniques proposed for overcoming
this problem [3] typically produce parameterized circuits that are
classically simulatable.

The third issue is the prevalence of spurious local optima that can
be significantly deviate from the global optimum. In general, this
generally leads to exponentially many parameters being required
to ensure quality solutions, making the training infeasible due to
the high cost of obtaining gradients.

2.3 Large quantum annealing devices yet to
yield speedups

Quantum annealers were the first type of quantum devices capa-
ble of tackling optimization problems beyond trivial sizes. Their
scalability advantage stems from the fact that the analog control of
qubits is easier to engineer than high-fidelity digital operation. This
led to devices with thousands of qubits available commercially, of-
fering an enticing opportunity to benchmark such devices against
classical solvers on problems for which classical solvers exhibit
non-trivial runtime.

Unfortunately, despite over a decade of research, conclusive
evidence demonstrating a quantum speedup for optimization prob-
lems using quantum annealers remains unclear. For example, recent
work [1] has benchmarked instances of the maximum-independent-
set problem, previously reported to be solved with a potential super-
linear quantum speedup over classical simulated annealing, using
a quantum annealer based on two-dimensional Rydberg atom ar-
rays. Indeed, it has been demonstrated that these problems can be
solved to optimality for up to thousands of nodes within minutes
using both custom and generic commercial solvers on commodity
hardware, without any instance-specific fine-tuning. Furthermore,
this study suggests that if simulated annealing is allowed to exploit
information about the underlying quasi-planar graph, its scaling
performance is competitive with that of the quantum algorithm.

Some recent results have indicated that quantum annealers,
when applied to large spin-glass problems that match the annealer’s
architecture, can be competitive against a broad range of off-the-
shelf classical solvers. While these results are encouraging, further

research is needed to validate their algorithmic power even in the
presence of carefully tuned state-of-the-art classical algorithms.
More broadly, it remains an open question whether annealers can
outperform classical methods on industrially-relevant problems
which do not typically have the two-dimensional structure match-
ing the connectivity of annealers.

3 OPPORTUNITIES
Encouragingly, recent years have unveiled new and exciting oppor-
tunities for quantum algorithms in optimization. We believe that
the exploration of these opportunities provides a promising path
to quantum advantage.

3.1 Focus beyond polynomial-time algorithms
Polynomial-time quantum approximation algorithms have been
shown to have limited performance in solving exponentially hard
optimization problems. Specifically, there have been several re-
sults showing limitations and theoretical bounds on the perfor-
mance of polynomial-time approximation algorithms in combina-
torial optimization and first-order methods in convex optimization.
Even quantum accelerations of numerical linear algebra have been
proven cumbersome for speeding up polynomial-time algorithms,
such as interior-point methods. Although evidence suggests po-
tential quantum speedups for structured convex programs, such
problem formulations are not prevalent in finance.

In practice, industry typically solves problems using algorithms
with exponential classical complexity, such as branch-and-bound.
Due to risk aversion and regulatory mandates, exact solutions
are typically favored over polynomial-time approximations, even
though obtaining them may require exponential runtime in the
worst case. Moreover, topological obstructions based on the Over-
lap Gap Property apply to quantum algorithms that succeed in poly-
nomial time with at least inverse polynomial success probability,
and thus do not apply to potentially exponential-time algorithms.
As a consequence, quantum speedups for exponential-time exact
optimization algorithms are likely to have a significant impact on
industry and provide a fruitful and underexplored research area. As
an example, quantum approximate optimization algorithm (QAOA)
with fixed-parameter schedules has shown promise in producing
faster exponential-time algorithms [12]. Moreover, the observed
advantage is significantly larger than what has been observed with
prior techniques, such as short-path algorithm or amplitude amplifi-
cation. A further benefit of considering exponential-time algorithms
is that the scaling analysis becomes easier numerically, as the rapid
growth of complexity with problem size makes even small instances
hard, thus enabling empirical studies at moderate scales.

3.2 New evidence for the power of known
heuristics

The mechanism and scaling performance of even well-studied quan-
tum heuristics for optimization are not well-understood. However,
recent years saw large progress, enabled by both new analytical
techniques and improved simulation algorithms that are better ca-
pable to take advantage of high-performance computing systems.
One promising and well-studied quantum heuristic for optimiza-
tion problems is the QAOA. In QAOA, an initial quantum state is
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evolved towards the solution by applying a phase operator and a
mixing operator in alternation, with the parameters for the opera-
tors either fixed or optimized using a classical routine. QAOA has
relatively low hardware requirements and can be benchmarked at
non-trivial scale on near-term quantum hardware [14]. Recently
developed analytical forms for expected solution quality of high-
depth QAOA have been used to derive analytically optimal QAOA
parameters and to connect optimal QAOA parameters for weighted
problems to unweighted ones [16]. These results provide a broadly-
applicable parameter setting heuristics, reducing the challenge of
QAOA parameter optimization.

Classical simulation has been one of the main drivers of progress
in understanding of QAOA. For example, recent numerical evidence
shows that the insights from quantum adiabatic computing still ap-
plies in the small depth region. Specifically, QAOA performs better
when the initial state is prepared to be close or exactly equal to the
ground state of the mixing Hamiltonian, i.e., when the initials state
aligns with the mixer [5]. Recent advances in high-performance
simulation of QAOA enable scaling analysis at problem sizes that
were previously unreachable. QOKit [9] implements fast simulation
of high-depth QAOA by precomputing the diagonal phase operator
on GPU and distributing computation across many nodes using
MPI. Scaling this simulator to up to 1, 024 GPUs enables simulation
of QAOA with up 40 qubits and tens of layers and provides evi-
dence of a speedup over state-of-the-art classical methods [12]. We
are optimistic that new ideas in simulation, including approximate
simulation, will give new insights into performance of algorithms
like QAOA at scale.

3.3 New quantum mechanisms for optimization
In addition to improving our understanding of existing heuristics, it
is essential to develop new mechanisms for quantum optimization.
One such approach leverages so-called “shortcuts to adiabaticity”.
While preparing the ground state of optimization Hamiltonian
remains difficult with standard adiabatic approach due to its re-
quirement in long evolution time, various shortcuts-to-adiabaticity
techniques have been proposed to minimize losses due to diabatic
transitions during the evolution within a fixed total time. In partic-
ular, counterdiabatic (CD) driving that leverages adiabatic gauge
potential has been adopted to suppress diabatic transitions. By
adding a velocity-dependent ancillary control field, the system can
remain in the instantaneous ground state.

Although the adiabatic gauge potential theoretically exists, its
practical acquisition and application in many-body systems present
a considerable challenge. This is due to the requirement for detailed
knowledge of the spectral properties of instantaneous Hamiltonians
and the need to manipulate highly non-local multi-body interac-
tions. To tackle this challenge, local CD driving protocols [8] have
been proposed to suppress diabatic transitions with accessible lo-
cal controls. These shortcuts-to-adiabaticity techniques are readily
applicable in optimization problems, such as portfolio optimiza-
tion, aiming for an approximate ground state with high fidelity. We
remark that the combination of adiabatic evolution, CD driving,
and quantum optimal control theory opens up new possibilities in
solving quantum optimization challenges.

3.4 Direct integration of constraint
enforcement into quantum algorithms

Production-relevant optimization problems in the industry often
come with constraints. In finance, optimization problems are typi-
cally highly-constrained due to budget, risk tolerance, and regula-
tory requirements. Such constraints can be enforced by adding a
penalty to the objective. However, the penalty strength is usually
difficult to choose and the penalized objective may have undesir-
able properties [10], e.g. a vanishing gap in adiabatic quantum
algorithms. In variational algorithms, the constraint can be incor-
porated into the objective for parameter optimization [4]. However,
this approach still suffers from all the challenges associated with
applying variational algorithms discussed above.

A promising approach explored by a number of recent results
aim is to accommodate the constraints by directly modifying the
quantum evolution. In QAOA, it has been shown that the evolution
can be efficiently restricted to respect binary-variable constraints
by applying specific mixers [5, 10]. Quantum Zeno dynamics uses
repeated projective measurements to enforce that the quantum
state remains in the in-constraint subspace throughout the evolu-
tion [7]. Quantum constrained Hamiltonian optimization enforces
the constraint Hamiltonian and adiabatically “rotates” the objective
Hamiltonian to interpolate between the worst and best feasible
states while remaining in the in-constraint subspace throughout
the evolution [11]. All of these techniques have been shown to
lead to dramatically better performance than the penalty method.
The need to incorporate more complex constraints and reduce the
overhead of doing so provides an opportunity for exciting future
research.

3.5 Recent advances prompt a rethink of
overheads of error correction

Most of the algorithms discussed above require a fault-tolerant (FT)
quantum processor to realize the quantum speedup. Fault-tolerant
quantum computing involves executing fault-tolerant operators
on encoded qubits, which introduces a considerable overhead. Ad-
ditionally, quantum optimization algorithms heavily rely on non-
Clifford gates, such as arbitrary rotation gates, whose fault-tolerant
implementation of such gates is known to be challenging. To ad-
dress these challenges, the community has investigated techniques
such as gate synthesis, magic state distillation, and post-selection
approaches. Several papers have conducted resource estimations for
FT quantum optimization algorithms. Given that the research and
development of FT quantum computing is still in its early stages,
there exists a significant improvement space for the efficiency of
fault-tolerantly executing quantum optimization algorithms, in-
cluding both the provable ones and quantum heuristics.

Of particular interest are novel “good” quantum LDPC codes
with constant rate (logical per physical qubits) and linear distance
(growing with the number of physical qubits). Such codes have
the potential to drastically lower the overhead of error correction,
making at least some of the low-degree polynomial speedups prac-
tical [13]. This analysis is made urgent by the rapid progress in
quantum hardware. For example, the atom shuttling in atomic
systems has enabled long-range connectivity and geometrically
non-local parity checks.
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3.6 Quantum-inspired algorithms
While quantum algorithms for optimization still have a long way
to go before they are commercially useful, quantum-inspired meta-
heuristic algorithms, e.g., annealing algorithms executed in Ising
machines, have found some success in solving large scale binary
quadratic optimization problems. However, questions regarding the
propensity of these physics-based algorithms to be trapped in sub-
optimal solutions or their convergence rates are still outstanding.
Both theoretical and empirical studies of such algorithms will help
bridge the gap between the state-of-the-art classical computing
hardware and quantum computers.

4 CONCLUSION
Quantum optimization stands out as one of the most promising
application domains for quantum computers. While we believe
quantum computing will indeed revolutionize optimization, sev-
eral challenges must be overcome before we can fully realize its
benefits. The vibrant quantum optimization research community is
well-positioned to overcome these challenges. We now highlight
three threads that appear throughout this paper, and encourage the
researchers to address them in their work.

First, rigorous accumulation of evidence for scaling advantage
of heuristics is of great importance. Quantum annealing commu-
nity has established a template for studies of heuristics, and has
some hard-earned lessons for the rest of quantum optimization
community. With the increasing maturity of digital devices and the
development of novel simulation techniques, benchmarking heuris-
tics at larger scales becomes more feasible, making these lessons
increasingly applicable. We remark that such evidence of speedup
is valuable even if obtained in a vary narrow setting (e.g., on only a
single problem) as it contributes to the accumulation of knowledge.
In aggregate, many such results would remove any doubts about
the potential of a given heuristic to provide a speedup. Moreover,
such results will allow the community to rule out unpromising
heuristics.

Second, resource estimation must be kept up-to-date with the
evolving hardware landscape. The significant progress in both quan-
tum hardware and error-correcting codes in recent years has been
remarkable. For example, advancements in atomic quantum com-
puters and error-correcting codes may shift the frontier for the
kinds of speedups that are relevant in practice. Developments in
software packages for resource estimation greatly simplify such
work. Also, the deep integration between error correction and al-
gorithms holds promise for significant resource reductions. The
contributions from design automation community are crucial to
the success of such efforts.

Finally, the development of novel mechanisms for quantum opti-
mization and a better understanding of existing ones are necessary
for achieving significant speedups. It is unlikely that integrating
amplitude amplification into a classical algorithm will lead to a
practical quantum speedup in the medium-term, no matter how
mathematically sophisticated the construction is. Exciting recent
developments make us optimistic that breakthroughs are within
reach. Such opportunities include optimization algorithms based
on various kinds of Hamiltonian dynamics (for both discrete and
continuous optimization), the use of counterdiabatic terms, and

short-path algorithms, to name just a few. The growing size and
diversity of the researchers in the community are certain to lead to
even more exciting ideas.

The ubiquity of optimization problems presents both challenges
and opportunities. While classical solvers have been extensively
optimized to tackle the problems that underlie daily operations
of our economy, there remains a plethora of industrially-relevant
problems that require hours to solve even with best classical solvers.
Even a moderate speedup in solving these problems could lead to
significant economic benefits. We hope this paper helps to focus
researchers’ attention on the challenges and opportunities that are
most pertinent to realizing such speedups.
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